Gene interactions and pathways from curated databases and text-mining
Endocrinology 1997, PMID: 9322936

Osteogenic protein-1 stimulates production of insulin-like growth factor binding protein-3 nuclear transcripts in human osteosarcoma cells.

Hayden, J M; Strong, D D; Baylink, D J; Powell, D R; Sampath, T K; Mohan, S

To begin delineating molecular mechanisms by which osteogenic protein-1 (OP-1) modulates its effect on the insulin-like growth factor (IGF) system in human skeletal cells, we evaluated time-course effects of OP-1 on the expression of IGFBP-3 messenger RNA (mRNA) in human SaOS-2 osteosarcoma cells and found that 100 ng/ml of OP-1 increased (maximum 10.7-fold at 24 h; P < 0.01) the level of IGFBP-3 mRNA in a time-dependent manner (from 3-36 h; treatment x time interaction, P < 0.001). The stimulatory effect of OP-1 on IGFBP-3 mRNA was not promoted by transcript stabilization; actually, OP-1 treatment selectively increased the decay of mRNA for IGFBP-3 (T1/2 = 5 h vs. 24 h for OP-1 and controls), but not for IGFBP-4 or beta-actin. Conversely, OP-1 acutely increased IGFBP-3 nuclear transcript abundance in total RNA samples ranging between 1-24 h of treatment. After 6 h of treatment, OP-1 produced an average 4-fold increase (P < 0.02; n = 4 experiments) in the level of IGFBP-3 nuclear transcripts vs. a 3-fold increase (P < 0.01; n = 2 experiments) in mRNA abundance. The OP-1 stimulated induction of IGFBP-3 nuclear transcript and mRNA expression was dependent on de novo protein synthesis. Transient transfection experiments were undertaken to isolate putative OP-1 stimulatory cis-elements within 1.8-kb of the IGFBP-3 5'-flanking region in SaOS-2 and TE-85 osteosarcoma cells. In these experiments, OP-1 did not stimulate IGFBP-3 proximal promoter activity in either cell line, thus suggesting that OP-1 reactive domains may be located either beyond the currently established 5'-flanking region, or within internal exon/intron regions of the IGFBP-3 gene. In conclusion, OP-1 treatment stimulates IGFBP-3 expression in human osteoblastic cells by a mechanism that largely promotes the production of IGFBP-3 nuclear transcripts, a process that requires de novo protein synthesis, and overrides an OP-1-induced targeted degradation of IGFBP-3 steady-state mRNA.

Diseases/Pathways annotated by Medline MESH: Bone Neoplasms, Osteosarcoma
Document information provided by NCBI PubMed

Text Mining Data

insulin-like growth factor → Osteogenic protein-1: " Osteogenic protein-1 stimulates production of insulin-like growth factor binding protein-3 nuclear transcripts in human osteosarcoma cells "

IGFBP-3 → OP-1: " In these experiments, OP-1 did not stimulate IGFBP-3 proximal promoter activity in either cell line, thus suggesting that OP-1 reactive domains may be located either beyond the currently established 5'-flanking region, or within internal exon/intron regions of the IGFBP-3 gene "

Manually curated Databases

No curated data.