Gene interactions and pathways from curated databases and text-mining
J Biol Chem 1996, PMID: 8662912

Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase.

Eguchi, S; Matsumoto, T; Motley, E D; Utsunomiya, H; Inagami, T

In cultured rat vascular smooth muscle cells, angiotensin II (Ang II) induced a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor, which was insensitive to pertussis toxin but was abolished by the phospholipase C inhibitor, U73122. The Ang II-induced MAPK activation was not affected by the protein kinase C inhibitor, GF109203X, and was only partially impaired by pretreatment with a phorbol ester, whereas both treatments completely prevented MAPK activation by the phorbol ester. Intracellular Ca2+ chelation by TMB-8, but not extracellular Ca2+ chelation or inhibition of Ca2+ influx, abolished Ang II-induced MAPK activation. The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187. Ang II caused a rapid increase in the binding of GTP to p21(ras), and this was inhibited by genistein, TMB-8, and calmidazolium but not by pertussis toxin or GF109203X. These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals.

Document information provided by NCBI PubMed

Text Mining Data

mitogen activated protein kinase → angiotensin II (Ang II): " In cultured rat vascular smooth muscle cells, angiotensin II (Ang II) induced a rapid increase in mitogen activated protein kinase ( MAPK ) activity through the Ang II type 1 receptor, which was insensitive to pertussis toxin but was abolished by the phospholipase C inhibitor, U73122 "

MAPK → calmodulin: " The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187 "

MAPK → Ang II: " The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187 "

Ang II → calmodulin: " The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187 "

MAPK → Ang: " These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals "

MAPK → p21(ras)activation: " These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals "

Ang II-induced → Ang: " These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals "

Ang II-induced → p21(ras)activation: " These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals "

Manually curated Databases

No curated data.