Gene interactions and pathways from curated databases and text-mining
Arterioscler Thromb Vasc Biol 1995, PMID: 7583584

Stimulation of Gs and inhibition of Gi protein functions by minimally oxidized LDL.

Parhami, F; Fang, Z T; Yang, B; Fogelman, A M; Berliner, J A

We have previously shown that treatment of aortic endothelial cells with minimally oxidized LDL (MM-LDL) induces their interaction with monocytes but not neutrophils and that these induced responses are associated with increased cAMP levels. Here we studied the mechanism of by which MM-LDL elevates cAMP levels. Treatment of human aortic endothelial cells with MM-LDL resulted in a saturable dose-dependent increase in cAMP levels. Studies using a combination of pertussis toxin and MM-LDL suggested that part of the cAMP increase was due to the stimulation of Gs complexes. Studies with pertussis toxin-treated membranes in which Gi was completely inhibited were used to directly address the effect of MM-LDL on the Gs pathway. MM-LDL and an oxidized lipid (palmitoyl arachidonyl phosphatidylcholine), the effects of which mimic those of MM-LDL, caused a 40% to 100% increase in cAMP levels in these isolated membranes that was augmented by GTP, thus showing Gs stimulation. These results also show that MM-LDL increases cAMP levels by inhibiting Gi. MM-LDL inhibited ADP ribosylation of Gi by about 30% and completely abolished the ability of serotonin to interact with Gi complexes, whereas direct activation of Gi by mastoparan was not inhibited. This observation suggests that MM-LDL interferes with the interaction of Gi molecules with inhibitory receptors. There was no direct effect of MM-LDL on adenylate cyclase. Overall, these studies show that MM-LDL increases cAMP levels both by stimulating Gi and inhibiting Gi complexes.

Document information provided by NCBI PubMed

Text Mining Data

adenylate cyclase — MM-LDL: " There was no direct effect of MM-LDL on adenylate cyclase "

Manually curated Databases

No curated data.