Gene interactions and pathways from curated databases and text-mining
Eur J Neurosci 2009, PMID: 20092569

p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms.

Wang, Yan; Dong, Xiao-Xia; Cao, Yi; Liang, Zhong-Qin; Han, Rong; Wu, Jun-Chao; Gu, Zhen-Lun; Qin, Zhen-Hong

The present study sought to investigate mechanisms by which p53 induction contributes to excitotoxic neuronal injury. Rats were intrastriatally administered the N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid (QA), the changes in the expression of p53 and its target genes involved in apoptosis and autophagy, including p53-upregulated modulator of apoptosis (PUMA), Bax, Bcl-2, damage-regulated autophagy modulator (DRAM) and other autophagic proteins including microtubule-associated protein 1 light chain 3 (LC3) and beclin 1 were assessed. The contribution of p53-mediated autophagy activation to apoptotic death of striatal neurons was assessed with co-administration of the nuclear factor-kappaB (NF-kappaB) inhibitor SN50, the p53 inhibitor Pifithrin-alpha (PFT-alpha) or the autophagy inhibitor 3-methyladenine (3-MA). The increased formation of autophagosomes and secondary lysosomes were observed with transmission electron microscope after excitotoxin exposure. QA induced increases in the expression of p53, PUMA, Bax and a decrease in Bcl-2. These changes were significantly attenuated by pre-treatment with SN50, PFT-alpha or 3-MA. SN50, PFT-alpha or 3-MA also reversed QA-induced upregulation of DRAM, the ratio of LC3-II/LC3-I and beclin 1 protein levels in the striatum. QA-induced internucleosomal DNA fragmentation and loss of striatal neurons were robustly inhibited by SN50, PFT-alpha or 3-MA. These results suggest that overstimulation of NMDA receptors can induce NF-kappaB-dependent expression of p53. p53 participates in excitotoxic neuronal death probably through both apoptotic and autophagic mechanisms.

Document information provided by NCBI PubMed

Text Mining Data

p53 → NF-kappaB: " These results suggest that overstimulation of NMDA receptors can induce NF-kappaB dependent expression of p53 "

Manually curated Databases

No curated data.