Gene interactions and pathways from curated databases and text-mining
Clin Cancer Res 2005, PMID: 16033851

Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer.

Boulay, Anne; Rudloff, Joelle; Ye, Jingjing; Zumstein-Mecker, Sabine; O'Reilly, Terence; Evans, Dean B; Chen, Shiuan; Lane, Heidi A

OBJECTIVE

RAD001 (everolimus), a mammalian target of rapamycin (mTOR) pathway inhibitor in phase II clinical trials in oncology, exerts potent antiproliferative/antitumor activities. Many breast cancers are dependent for proliferation on estrogens synthesized from androgens (i.e., androstenedione) by aromatase. Letrozole (Femara) is an aromatase inhibitor used for treatment of postmenopausal women with hormone-dependent breast cancers. The role of the mTOR pathway in estrogen-driven proliferation and effects of combining RAD001 and letrozole were examined in vitro in two breast cancer models.

METHODS

The role of the mTOR pathway in estrogen response was evaluated in aromatase-expressing MCF7/Aro breast cancer cells by immunoblotting. Effects of RAD001 and letrozole (alone and in combination) on the proliferation and survival of MCF7/Aro and T47D/Aro cells were evaluated using proliferation assays, flow cytometry, immunoblotting, and apoptosis analyses.

RESULTS

Treatment of MCF7/Aro cells with estradiol or androstenedione caused modulation of the mTOR pathway, a phenomenon reversed by letrozole or RAD001. In MCF7/Aro and T47D/Aro cells, both agents inhibited androstenedione-induced proliferation; however, in combination, this was significantly augmented (P < 0.001, two-way ANOVA, synergy by isobologram analysis). Increased activity of the combination correlated with more profound effects on G1 progression and a significant decrease in cell viability (P < 0.01, two-way ANOVA) defined as apoptosis (P < 0.05, Friedman test). Increased cell death was particularly evident with optimal drug concentrations.

CONCLUSIONS

mTOR signaling is required for estrogen-induced breast tumor cell proliferation. Moreover, RAD001-letrozole combinations can act in a synergistic manner to inhibit proliferation and trigger apoptotic cell death. This combination holds promise for the treatment of hormone-dependent breast cancers.

Diseases/Pathways annotated by Medline MESH: Breast Neoplasms, Carcinoma
Document information provided by NCBI PubMed

Text Mining Data

mammalian target of rapamycin (mTOR) ⊣ RAD001: " RAD001 ( everolimus ), a mammalian target of rapamycin (mTOR) pathway inhibitor in phase II clinical trials in oncology, exerts potent antiproliferative/antitumor activities "

Manually curated Databases

No curated data.